
 Surya Lakshmi Kantham Vinti

 CSE Dept

 ACET

UNIT -1

(PART 1)

INTRODUCTION TO PYTHON

SYLLABUS :

Introduction: Introduction to Python, Program Development Cycle, Input, Processing, and Output,

Displaying Output with the Print Function, Comments, Variables, Reading Input from the Keyboard,

Performing Calculations, Operators. Type conversions, Expressions, More about Data Output.

Data Types, and Expression: Strings Assignment, and Comment, Numeric Data Types and Character

Sets, Using functions and Modules.

Decision Structures and Boolean Logic: if, if-else, if-elif-else Statements, Nested Decision Structures,

Comparing Strings, Logical Operators, Boolean Variables. Repetition Structures: Introduction, while

loop, for loop, Calculating a Running Total, Input Validation Loops, Nested Loops.

Introduction to Python

Python was developed by Guido Van Rossum in 1991 at National Research Institute for

Mathematics and Computer Science in the Netherlands.

Application Areas of Python:

Features of Python :

➢ Simple

www.Jntufastupdates.com 1

 Surya Lakshmi Kantham Vinti

 CSE Dept

 ACET

– Python is a simple programming language. Reading a program written in python

feels almost like reading English.

– Programmers can concentrate on the solution rather than the language.

➢ Easy to learn

– A python program is clearly defined and easily readable. The structure of the

program is very simple.

➢ Free and open source

– Python is an example of open source software.

– Anyone can freely distribute it, read the source code, edit it, and even use the

code to write new programs

➢ High-level Language

– When writing programs in python, the programmers don’t have to worry about

the low-level details like managing memory used by the program.

➢ Portable

– Python is a portable language. The programs work on any of the operating

systems like Linux, Windows, Macintosh, Solaris, Palm OS..etc.

➢ Interpreted

– Python is processed at runtime by the interpreter. No need to compile the

program before executing it.

– Python converts the source code to intermediate form called byte code, which

is translated into the native language of your computer so that it can be executed.

➢ Object Oriented

– Python supports procedure-oriented programming as well as object-oriented

programming.

– In procedure-oriented language, the program is built around procedures or

functions which are nothing but reusable pieces of programs.

www.Jntufastupdates.com 2

 Surya Lakshmi Kantham Vinti

 CSE Dept

 ACET

– In object oriented languages, the program is built around objects which combine

data and functionality.

➢ Extensible

– You can write some of your python code in other languages . It can be extended

to other languages.

➢ Extensive Libraries

– Python has a huge library functions are compatible on UNIX, Windows,

Macintosh and allow programmers to perform wide range of applications

varying from text processing, maintaining databases, to GUI programming.

Program Development Cycle:

• Computer scientists refer to the process of planning and organizing a program as

software development.

• One version of software development is known as the waterfall model.

• The waterfall model consists of several phases:

1. Customer request—

www.Jntufastupdates.com 3

 Surya Lakshmi Kantham Vinti

 CSE Dept

 ACET

In this phase, the programmers receive a broad statement of a problem that is potentially

amendable to a computerized solution. This step is also called the user requirements

phase.

2. Analysis—

The programmers determine what the program will do. This is sometimes viewed as a

process of clarifying the specifications for the problem.

3. Design—

 The programmers determine how the program will do its task.

4. Implementation—

The programmers write the program. This step is also called the coding phase.

5. Integration—

Large programs have many parts. In the integration phase, these parts are brought

together into a smoothly functioning whole, usually not an easy task.

6. Maintenance—

Programs usually have a long life; a life span of 5 to 15 years is common for software.

During this time, requirements change, errors are detected, and minor or major

modifications are made.

• There is more to software development than writing code.

• If you want to reduce the overall cost of software development, write programs that are

easy to maintain.

– This requires thorough analysis, careful design, and a good coding style.

• Keep in mind that mistakes found early are much less expensive to correct than those found

late.

• Following figure illustrates some relative costs of repairing mistakes when found in

different phases.

www.Jntufastupdates.com 4

 Surya Lakshmi Kantham Vinti

 CSE Dept

 ACET

– These are not just financial costs but also costs in time and effort.

www.Jntufastupdates.com 5

 Surya Lakshmi Kantham Vinti

 CSE Dept

 ACET

Getting Started with Python Programming:

• Python is a high-level, general-purpose programming language for solving problems

on modern computer systems.

• The language and many supporting tools are free, and Python programs can run on any

operating system.

• You can download Python, its documentation, and related materials from

www.python.org.

Running Code in the Interactive Shell :

• You can run simple Python expressions and statements in an interactive programming

environment called the shell.

• The easiest way to open a Python shell is to launch the IDLE (Integrated DeveLopment

Environment).

– This is an integrated program development environment that comes with the

Python installation.

– When you do this, a window named Python Shell opens.

• A shell window contains an opening message followed by the special symbol >>>,

called a shell prompt.

• When you enter an expression or statement, Python evaluates it and displays its result,

if there is one, followed by a new prompt.

www.Jntufastupdates.com 6

 Surya Lakshmi Kantham Vinti

 CSE Dept

 ACET

COLOR CODING OF PYTHON PROGRAM ELEMENTS:

Input, Processing, and Output :

• The Python shell itself is such a program;

– its inputs are Python expressions or statements.

– Its processing evaluates these items.

– Its outputs are the results displayed in the shell.

Output :

• The programmer can force the output of a value by using the print function.

• It can take any of the following forms:

1) print(<expression>)

 Here <expression> can be replaced with an expression that need to be

evaluated or any string that can be printed.

>>> print(3+4)

7

www.Jntufastupdates.com 7

 Surya Lakshmi Kantham Vinti

 CSE Dept

 ACET

>>> print("Hello CSE!!")

Hello CSE!!

2) print(<expression>,..., <expression>)

• Note the ellipsis (...) in this syntax example. The ellipsis indicates that you could

include multiple expressions after the first one.

• The print function evaluates the expressions and displays their results, separated by

single spaces, on one line.

>>> print(3+4,5*9,"hai cse")

 7 45 hai cse

3) print(<expression>, end = "")

• Whether it outputs one or multiple expressions, the print function always ends its output

with a newline.

• To begin the next output on the same line as the previous one, you can place the

expression end = "", which says “end the line with an empty string instead of a newline,”

at the end of the list of expressions

>>> def hai():

 print("hai")

 print("hello")

>>> hai()

hai

hello

>>> def hai():

 print("hai",end="")

 print("hello")

www.Jntufastupdates.com 8

 Surya Lakshmi Kantham Vinti

 CSE Dept

 ACET

>>> hai()

Haihello

4) print(<expression>,...,<expression>, sep=‘<literal>’)

 sep stands for separator and is assigned a single space (' ') by default. It

determines the value to join elements with.

>>>print(3+4,"hai",5*7)

7 hai 35

>>> print(3+4,"hai",5*7,sep='-->')

7-->hai-->35

>>>print(3+4,"hai",5*7,sep='\n')

7

hai

35

Input :

• you’ll often want your programs to ask the user for input. You can do this by using the

input function.

• This function causes the program to stop and wait for the user to enter a value from the

keyboard.

• The form of an assignment statement with the input function is the following:

 <variable identifier> = input(<a string prompt>)

• The input function does the following:

 1. Displays a prompt for the input. In this example, the prompt is "Enter your name: ".

www.Jntufastupdates.com 9

 Surya Lakshmi Kantham Vinti

 CSE Dept

 ACET

2. Receives a string of keystrokes, called characters, entered at the keyboard and returns

the string to the shell.

>>> name=input("Enter a name")

Enter a nameSurya

>>> name

'Surya'

>>> a=input("Enter a number")

Enter a number9

>>> a

'9' # 9 is treated as String

>>> b=input("Enter a real number")

Enter a real number9.563

>>> b

'9.563' #9.563 is also treated as string

• The input function always builds a string from the user’s keystrokes and returns it to

the program.

• After inputting strings that represent numbers, the programmer must convert them from

strings to the appropriate numeric types.

• In Python, there are two type conversion functions for this purpose, called

– int (for integers) and

– float (for floating point numbers).

www.Jntufastupdates.com 10

 Surya Lakshmi Kantham Vinti

 CSE Dept

 ACET

Editing, Saving, and Running a Script :

• To compose and execute programs in this manner, you perform the following steps:

 1. Select the option New Window from the File menu of the shell window.

2. In the new window, enter Python expressions or statements on separate lines, in the

order in which you want Python to execute them.

3. At any point, you may save the file by selecting File/Save. If you do this, you

should use a . py extension.

 For example, your first program file might be named myprogram.py.

4. To run this file of code as a Python script, select Run Module from the Run menu

or press the F5 key.

Comments :

• A comment is a piece of program text that the computer ignores but that provides useful

documentation to programmers.

a=input("Enter a number")

Enter a number9

>>> a

'9'

a=int(input("Enter a number"))

Enter a number9

>>> a

9

>>> b=input("Enter a real number")

Enter a real number9.563

>>> b

'9.563'

>>> b=float(input("Enter a real number"))

Enter a real number9.563

>>> b

9.563

www.Jntufastupdates.com 11

 Surya Lakshmi Kantham Vinti

 CSE Dept

 ACET

• At the very least, the author of a program can include his or her name and a brief

statement about the program’s purpose at the beginning of the program file.

• end-of-line comments can document a program. These comments begin with the #

symbol and extend to the end of a line. An end-of-line comment might explain the

purpose of a variable or the strategy used by a piece of code.

>>> RATE = 0.85 # Conversion rate for Canadian to US dollars

It’s always better on a programmer’s side to:

1) Begin a program with a statement of its purpose and other information that would help orient

a programmer called on to modify the program at some future date.

2) Accompany a variable definition with a comment that explains the variable’s purpose.

3) Precede major segments of code with brief comments that explain their purpose.

4) Include comments to explain the workings of complex or tricky sections of code

Variables :

• Variable associates a name with a value, making it easy to remember and use the

value later in a program.

• Variables serve two important purposes in a program.

– They help the programmer keep track of data that change over time.

– They also allow the programmer to refer to a complex piece of information with

a simple name

How to frame a Variable name(identifier) :

• A variable name must begin with either a letter or an underscore (_), and can contain

any number of letters, digits, or other underscores

• Python variable names are case sensitive; thus, the variable WEIGHT is a different

name from the variable weight.

www.Jntufastupdates.com 12

 Surya Lakshmi Kantham Vinti

 CSE Dept

 ACET

• In the case of variable names that consist of more than one word, it’s common to begin

each word in the variable name (except for the first one) with an uppercase letter. This

makes the variable name easier to read.

• For example, the name interestRate is slightly easier to read than the name interestrate

• Programmers use all uppercase letters for the names of variables that contain values

that the program never changes. Such variables are known as symbolic constants.

• Variables receive their initial values and can be reset to new values with an assignment

statement.

SYNTAX :

The simplest form of an assignment statement is the following:

 <variable name> = <expression>

• The Python interpreter first evaluates the expression on the right side of the

assignment symbol and then binds the variable name on the left side to this

value.

• When this happens to the variable name for the first time, it is called defining

or initializing the variable.

>>>9rate=78 #Started with number

SyntaxError: invalid syntax

>>> rate=78

>>> rate

78

>>> _rate=47

>>> rate

78

www.Jntufastupdates.com 13

 Surya Lakshmi Kantham Vinti

 CSE Dept

 ACET

>>> _rate

47

>>> @si=98.45 #Started with special symbol

SyntaxError: invalid syntax

>>> si=98.45

www.Jntufastupdates.com 14

 Surya Lakshmi Kantham Vinti

 CSE Dept

 ACET

Python Operators :

• Operators are used to perform operations on variables and values.

• Python divides the operators in the following groups:

– Arithmetic operators

– Comparison operators

– Logical operators

– Identity operators

– Membership operators

– Bitwise operators

– Assignment operators

1. Arithmetic operators:

Some basic arithmetic operators are +,-,*,/,%,** and //

We can apply these operators in numbers as well as variables to perform corresponding

operations

Let a= 10, b= 20

Operator Description Example Output

+ It is used to perform addition operation (add

the operands)

a+b 30

- Perform substation operation (subtract the

operands)

a-b -10

* Perform the multiplication operation a*b 200

/ It returns quotient a/b 0.5

% It returns the reminder b%a 0

** Perform power calculation(Exponent) a**b 1020

// Floor division a//b 20

Example:

a = float (input (“enter a number”))

b= float (input (“enter b value “))

print (“Addition of “,a,” and “, b,” is “,a+b)

print (“Subtraction of “,a,” and “,b,” is “,a-b)

print(“Product of “,a,” and “,b,” is “,a*b)

www.Jntufastupdates.com 15

 Surya Lakshmi Kantham Vinti

 CSE Dept

 ACET

print (“Division of “,a,” and “,b,” is “,a/b)

print(“Modulus division of “,b,” and “,a,” is “,b%a)

print(“Floor division of “,a,” and “,b,” is “,a//b)

print(“Exponent of “,a,” and “,b,” is “,a**b)

2) Comparison Operator: (Relational Operators):

• It is used to compare the values on its either sides (Left and Right) of the operator and

determines the relation between them.

• Let a = 100, b = 200

Operator Description Example Output

== It returns true if the two values on either side of the operator

are exactly same

a==b FALSE

!= It returns true if the two values on either side of the operator

are not same

a!=b TRUE

< It returns true if the value at LHS of the operator is less than

the value at the RHS of the operator, otherwise false

a<b TRUE

> It returns true if the value at LHS of the operator is greater

than the value at the RHS of the operator, otherwise false

a>b FALSE

<= It returns true if the value at LHS of the operator is less than

or equal to the value at the RHS of the operator, otherwise

false

a<=b TRUE

>= It returns true if the value at LHS of the operator is greater

than or equal to the value at the RHS of the operator,

otherwise false

a>=b FALSE

Example:

a = float(input(“Enter the value of a: “))

www.Jntufastupdates.com 16

 Surya Lakshmi Kantham Vinti

 CSE Dept

 ACET

b = float(input(“Enter the value of b: “))

print(a,” == “,b,a==b)

print(a,” != “,b,a!=b)

print(a,” < “,b,a<b)

print(a,” > “,b,a>b)

print(a,” <= “,b,a<=b)

print(a,” >= “,b,a>=b)

3) Logical Operators:

• Logical operators are used to evaluate two or more expressions with relational operators.

• Python supports 3 logical Operators

1. Logical AND (and)

2. Logical OR (or)

3. Logical NOT (not)

Logical AND (and):If expression on both sides of the logical operator are true, then the whole

expression is true.

Truth Table:

Exp 1 Exp 2 Exp 1 and Exp2

T T T

T F F

F T F

F F F

www.Jntufastupdates.com 17

 Surya Lakshmi Kantham Vinti

 CSE Dept

 ACET

Example:

Let a = 10, b = 20, c = 30, d = 40

 (a<d) and (b>c)

(True) and (False)

Result = False

Logical OR (or):If one or both the expressions is true then the whole expression is true.

Truth Table:

Exp 1 Exp 2 Exp1 or

Exp2

T T T

T F T

F T T

F F F

Example: Let a = 10, b = 20, c = 30, d = 40

 (a<d) or (b>c)

 (True) or (False)

 Result = True

Logical NOT (not):

• Logical NOT operator takes a single expression and negates the value of expression.

• Logical NOT produces a zero if the expression evaluates to a non-zero and produces 1 if

the expression produces zero.

Truth Table:

www.Jntufastupdates.com 18

 Surya Lakshmi Kantham Vinti

 CSE Dept

 ACET

Expression !(Expression)

T (1) F (0)

F (0) T (1)

Example: Let a = 10, b = 20

 not (a>b)

 not (False)

 Result : True

4) Identity Operators:

These operators compare the memory locations of two objects. Python supports two types of

Identity Operators

• is operator: It returns true if operands (or) values on both sides of the operator point to

the same object and False otherwise.

Example: If a is b – it returns 1 if id (a) is same as id (b)

• is not operator : It returns true if operands (or) values on both sides of the operator do

not point to the same object and False otherwise.

Example: If a is not b – it returns 1 if id (a) is not same as id (b)

5) Membership Operators:

Python supports two types of membership operators

• in

• not in

The names itself suggests that, test for membership in a sequence such as string, list, tuple.

in – The operator returns true if a variable is found in the specified sequence and false

otherwise.

Example: a in nums - it returns True if ‘a’ is present in the nums

www.Jntufastupdates.com 19

 Surya Lakshmi Kantham Vinti

 CSE Dept

 ACET

not in – The operator returns true if a variable is not found in the sequence.

Example: a not in nums - it returns 1 if ‘a’ is not present in the nums

>>>name="Surya"

>>> 'u' in name

True

>>> 'b' in name

False

>>> m=[45,67,12,42,55,564,21]

>>> 45 in m

True

>>> 34 in m

False

>>> 45 not in m

False

>>> 34 not in m

True

6) Bitwise Operators :

Bitwise Operators perform operations at bit level. These operators include

• Bitwise AND (&)

• Bitwise OR (|)

• Bitwise NOT (~)

• Bitwise XOR (^)

• Bitwise Shift

www.Jntufastupdates.com 20

 Surya Lakshmi Kantham Vinti

 CSE Dept

 ACET

Bitwise operators expect their operands to be of integers and track them as a sequence of

bits.

Bitwise AND (&):

The bit in the first operand is Anded with the corresponding bit in the second operand. If both

the bits are 1 then the corresponding bit result is 1 and 0 otherwise.

Truth Table:

Bit1 Bit2 Bit1 & Bit2

1 1 1

1 0 0

0 1 0

0 0 0

Example:

1010101010

&

1111010101

1010000000

Bitwise OR (|):

The bit in the first operand is Ored with the corresponding bit in the second operand. If either

of the bits are 1 then the corresponding bit result is 1 and 0 otherwise.

Truth Table:

Bit1 Bit2 Bit1 & Bit2

1 1 1

1 0 1

www.Jntufastupdates.com 21

 Surya Lakshmi Kantham Vinti

 CSE Dept

 ACET

0 1 1

0 0 0

Example:

 1 0 1 0 1 0 1 0 1 0

 |

 1 1 1 1 0 1 0 1 0 1

 1 1 1 1 1 1 1 1 1 1

Bitwise XOR (^):

The bit in the first operand is XORed with the corresponding bit in the second operand. If one

of the bits is 1, then the corresponding bit result is 1 otherwise 0

Truth Table:

Bit1 Bit2 Bit1 & Bit2

1 1 0

1 0 1

0 1 1

0 0 0

Example:

 1 0 1 0 1 0 1 0 1 0

^

 1 1 1 1 0 1 0 1 0 1

 0 1 0 1 1 1 1 1 1 1

www.Jntufastupdates.com 22

 Surya Lakshmi Kantham Vinti

 CSE Dept

 ACET

Bitwise NOT (~):

It is a unary operation, which performs logical negation on each bit of the operand. It produces

1’s compliment of the given value

Truth Table:

Bit ~(Bit)

0 1

1 0

Example:

~ (10101010) = 01010101

Shift Operators:

• Python supports two bitwise shift operators

1. Shift Left (<<)

2. Shift Right (>>)

• These operators are used to shift bits to the left or right.

• Syntax of shift operation is operand op num

• Let x = 00011010

 LSB MSB

• Example 1: shift Left

x=3

x<<2

0 0 0 1 1 0 0 1
X

www.Jntufastupdates.com 23

 Surya Lakshmi Kantham Vinti

 CSE Dept

 ACET

• Example 1: shift Right

x=3

x>>2

>>> x=5

>>> y=3

>>> x&y

1

>>> x|y

7

>>> x^y

6

0 0 0 1 1 0 0 1

0 0 1 1 0 0 1 0

0 1 1 0 0 1 0 0

0 0 0 0 0 0 1 1

0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0

0
Vacant space is filled with zero

0
Vacant space is filled with zero

1

1 Vacant space is filled

with zero

Vacant space is filled

with zero

www.Jntufastupdates.com 24

 Surya Lakshmi Kantham Vinti

 CSE Dept

 ACET

>>> ~x

-6

>>> x<<1

10

>>> x>>1

2

>>> x>>2

1

7) Assignment and In place OR shortcut operators

Assignment Operator:It is used to assign a value to the operand.

Syntax: variablename=value

 variablename=Expression

Example 1 : a=10 Example 2: c=a+b

b=20, c=30

Inplace Operator:

In place operators are called as shortcut operators that includes +=,-=, *=, /=, %=, //=, **=

allow you to write code like num = num + 10 more concisely as num+ = 3

Operator Description Example

= Assign right side value to the left hand side variable a = b

+= Add and assign a+=b=> a=a+b

www.Jntufastupdates.com 25

 Surya Lakshmi Kantham Vinti

 CSE Dept

 ACET

-= Subtract and assign a-=b=> a=a-b

= Multiply and assign a=b=> a=a*b

/= Divide and assign a/=b=> a=a/b

%= Modulus and assign a%=b=> a=a%b

//= Floor division and assign a//=b=> a=a//b

= Exponent and assign a=b=> a=a**b

Unary Operators:

• Acts on single operand

• Python supports single minus (-)

• When an operand is preceded by a minus sign, the unary operator negates its value.

Example: b=10

 print(-b)

Operator Precedence and Associativity:

The following table is the list from higher precedence to lower precedence.

** Exponentiation

~, +, - Unary Operator

*, /, //, % Multiply, division, floor division, modulus

division

+, - Addition and subtraction

www.Jntufastupdates.com 26

 Surya Lakshmi Kantham Vinti

 CSE Dept

 ACET

>>, << Right and left bitwise shift operator

& Bitwise AND

^, | Bitwise XOR and regular OR

<=, >=, <, > Comparison operator

<>, ;, ==, != Equality operator

=, %=, +=, -= Assignment operators

Is, is not Identity operators

In, not in Membership operators

NOT, OR, AND Logical Operators

Expressions in Python:

• An expression is any logical combination of symbols (like variables, constants and

operators) that represent a value.

• Every language has some set of rules to define whether the expression is valid/invalid.

• In python, an expression must have at least have one operand can have one or more

operators.

Example:a+b*c-5

In above expression

 “ +, *, - “ are operators

“ a, b, c ” are operators

“ 5 “ is operators

www.Jntufastupdates.com 27

 Surya Lakshmi Kantham Vinti

 CSE Dept

 ACET

• Valid Expression:

x = a/b

y = a*b

z = a^b

x = a>b

• Invalid Expressions:a+<y++

Types of Expression:

Python supports different types of expressions that can be classified as follows

• Based on position of operators in an expression

• Based on the datatype of the result obtained on evaluating an expression

• Based on position of operators in an expression

These type of expressions include:

Infix expression: In this type of expression the operator is placed in between the operands

Example: a=b-c

Prefix expression: In this type of expression the operator is placed before the operands

Example: a=-bc

Post fix expression: In this type of expression the operator is placed after the operands

Example: a=bc-

• Based on the data type of the result obtained on evaluating an expression:

These type of expressions include:

Constant Expression:

www.Jntufastupdates.com 28

 Surya Lakshmi Kantham Vinti

 CSE Dept

 ACET

This type of expression involves only constants.

Example: 8+9-2

Floating Point Expression:

This type of expression produces floating point results

Example: a = 10, b = 5

a*b/2

Integer Expression:

This type of expression produces integer result after evaluating the expression.

Example: a = 10

b = 5

c = a*b

Relational Expression:

This type of expression returns either true or false

Example: c = a>b

 Result: True

Logical Expression:

This type of expression combines two or more relational expressions and return a value as

true or false

Example: (a>b) and (a!=b)

 False and True

 Result:True

Bitwise Expressions:

www.Jntufastupdates.com 29

 Surya Lakshmi Kantham Vinti

 CSE Dept

 ACET

This type of expressions manipulate data at bit level.

Example: x = y&z

Assignment Expression:

In this type expression will assign a value or expression to a variable

Example: c=a+b

c=10

www.Jntufastupdates.com 30

 Surya Lakshmi Kantham Vinti

 CSE Dept

 ACET

UNIT -1

PART -2

1. Standard Data Types

• The data stored in memory can be of many types.

• Python has various standard data types that are used to define the operations possible

on them and the storage method for each of them.

• Python has five standard data types-

• Numbers

• String

• List

• Tuple

• Dictionary

1.1 Python Numbers

• Number data types store numeric values. Number objects are created when you assign

a value to them.

• Python supports different numerical types −

– int (signed integers)

– float (floating point real values)

– complex (complex numbers)

– A complex number consists of an ordered pair of real floating-point numbers

denoted by x + yj, where x and y are real numbers and j is the imaginary unit.

– bool (Boolean values)

• True False

• A number is also an immutable type, meaning that changing or updating its value

results in a newly allocated object.

1.1.1 How to Create and Assign Numbers (Number objects)

• Creating numbers is as simple as assigning a value to a variable:

anInt = 1

www.Jntufastupdates.com 31

 Surya Lakshmi Kantham Vinti

 CSE Dept

 ACET

aFloat = 3.1415926535897932384626433832795

aComplex = 1.23+4.56J

1.1.2 How to Update Numbers :

• update an existing number by (re)assigning a variable to another number.

• Every time you assign another number to a variable, you are creating a new object and

assigning it

• anInt += 1

1.1.3 How to Remove Numbers :

• delete a reference to a number object, just use the del statement

• del anInt

• del aLong, aFloat, aComplex

i) Standard (Regular or Plain) Integers

• Most machines (32-bit) running Python will provide a range of -2^31 to 2^31 -1, that

is -2, 147,483,648 to 2,147,483,647.

• If Python is compiled on a 64-bit system with a 64-bit compiler, then the integers for

that system will be 64-bit.

• Examples of Python integers:

 0101 84 -237 0x80 (mention x for hexadeximal)

 017 -680 -0x92 0o234 (mention o for octal)

ii) Boolean

• Objects of this type have two possible values, True or False.

>>>t=4>8

>>>type(t)

<class ‘bool’>

iii) Floating Point Numbers :

• Floats in Python are values that can be represented in straightforward decimal or

scientific notations.

www.Jntufastupdates.com 32

 Surya Lakshmi Kantham Vinti

 CSE Dept

 ACET

• These 8-byte (64-bit) values conform to the IEEE 754 definition (52M/11E/1S) where

52 bits are allocated to the mantissa, 11 bits to the exponent , and the final bit to the

sign.

• Floating point values are denoted by a decimal point (.) in the appropriate place and

an optional "e“ suffix representing scientific notation.

• Here are some floating point values:

0.0 -777. 1 -5.555567119 9.6e3 9.384e-23

iv) Complex Numbers

• A complex number is any ordered pair of floating point real numbers (x, y) denoted by

x + yj where x is the real part and y is the imaginary part of a complex number.

• Facts about Python's support of complex numbers:

• Imaginary numbers by themselves are not supported in Python (they are paired

with a real part of 0.0 to make a complex number)

• Complex numbers are made up of real and imaginary parts

• Syntax for a complex number: real+imagj

• Both real and imaginary components are floating point values

• Imaginary part is suffixed with letter "J" lowercase (j) or uppercase (J)

• The following are examples of complex numbers:

64.375+1j 4.23-8.5j 0.23-8.55j

1.2 Strings:

• Strings are sequence of individual characters enclosed in single or double quotes.

Ex :- >>>str=“hai how are u?”

 >>> new= ‘this is another example’

• Strings are immutable, meaning that changing an element of a string requires creating

a new string.

1.2.1 How to Create and Assign Strings

• Creating strings is as simple as using a scalar value and assign it to a variable:

>>> aString = 'Hello World!' # using single quotes

www.Jntufastupdates.com 33

 Surya Lakshmi Kantham Vinti

 CSE Dept

 ACET

>>> another = "Python is cool!" # double quotes

>>> print(aString) # print, no quotes!

Hello World!

>>> another # no print, quotes!

'Python is cool!'

1.2.2 How to Access Values in Strings

• Python does not support a character type; these are treated as strings of length one,

thus also considered a substring.

• To access substrings, use the square brackets for slicing along with the index or

indices to obtain your substring:

 >>> aString = 'Hello World!'

 >>> aString[0]

 'H'

 >>> aString[1:5]

 'ello'

 >>> aString[6:]

 'World!'

1.2.3 How to Update Strings

• You can "update" an existing string by (re)assigning a variable to another string.

 >>>aString=‘Hello World’

 >>> aString = aString[:6] + 'Python!'

 >>> aString

 'Hello Python!'

 >>> aString = 'different string altogether'

 >>> aString

 'different string altogether‘

www.Jntufastupdates.com 34

 Surya Lakshmi Kantham Vinti

 CSE Dept

 ACET

1.2.4 How to Remove Characters and Strings

• Strings are immutable, so you cannot remove individual characters from an existing

string.

• To clear or remove a string, you assign an empty string or use the del statement,

respectively:

 >>> aString = ''

 >>> aString

 ‘’

 >>> del aString

EXAMPLES :

str = 'Hello World!'

>>> print (str) # Prints complete string

Hello World!

>>> print (str[0]) # Prints first character of the string

H

>>> print (str[2:5]) # Prints characters starting from 3rd to 5th

llo

>>> print (str[2:]) # Prints string starting from 3rd character

llo World!

>>> print (str * 2) # Prints string two times

Hello World!Hello World!

>>> print (str + "TEST") # Prints concatenated string

Hello World!TEST

1.3 LISTS :

• Lists provide sequential storage through an index offset and access to single or

consecutive elements through slices.

• Lists are flexible container objects that hold an arbitrary number of Python objects

www.Jntufastupdates.com 35

 Surya Lakshmi Kantham Vinti

 CSE Dept

 ACET

• >>>a=[45,7,9,78]

 >>>a

 [45,7,9,78]

1.3.1 How to Create and Assign Lists

• Creating lists is as simple as assigning a value to a variable.

• Lists are delimited by surrounding square brackets ([])

>>>a=[8,9,'a',6.8,"hello"]

>>>a

[8, 9, 'a', 6.8, 'hello']

>>>b=[8,9,'a',6.8,[66,"bye"],"hello"]

>>>b

[8, 9, 'a', 6.8, [66, 'bye'], 'hello']

1.3.2 How to Access Values in Lists

• Slicing works similar to strings; use the square bracket slice operator ([]) along with

the index or indices.

>>>aList = [123, 'abc', 4.56, ['inner', 'list'], 7-9j]

>>> aList[0]

123

>>> aList[1:4]

['abc', 4.56, ['inner', 'list']]

>>> aList[:3]

[123, 'abc', 4.56]

>>> aList[3][1]

'list'

1.3.3 How to Update Lists

• You can update single or multiple elements of lists by giving the slice on the left-hand

side of the assignment operator, and you can add to elements in a list with the append()

method:

www.Jntufastupdates.com 36

 Surya Lakshmi Kantham Vinti

 CSE Dept

 ACET

aList

[123, 'abc', 4.56, ['inner', 'list'], (7-9j)]

>>> aList[2]

4.56

>>> aList[2] = 'float replacer'

>>> aList

[123, 'abc', 'float replacer', ['inner', 'list'], (7-9j)]

>>>aList.append(84)

>>> aList

[123, 'abc', 'float replacer', ['inner', 'list'], (7-9j),84]

1.3.4 How to Remove List Elements and Lists

• To remove a list element, you can use either the del statement if you know exactly

which element(s) you are deleting or the remove() method if you do not know.

>>> aList

[123, 'abc', 'float replacer', ['inner', 'list'], (7-9j)]

>>> del aList[1]

>>> aList

[123, 'float replacer', ['inner', 'list'], (7-9j)]

>>> aList.remove(123)

>>> aList

['float replacer', ['inner', 'list'], (7-9j)]

1.4 Tuples :

• Tuples are another container type extremely similar in nature to lists.

• The only visible difference between tuples and lists is that tuples use parentheses () and

lists use square brackets[].

www.Jntufastupdates.com 37

 Surya Lakshmi Kantham Vinti

 CSE Dept

 ACET

• Functionally, there is a more significant difference, and that is the fact that tuples are

immutable. Because of this, tuples can do something that lists cannot do . . . be a

dictionary key.

1.4.1 How to Create and Assign Tuples

• Creating and assigning tuples are practically identical to creating and assigning lists,

i.e., enclosing objects in paranthesis() and assigning the tuple to an identifier.

>>> a=(34,56,"hai",21.54)

>>> a

(34, 56, 'hai', 21.54)

>>> tuple("hai")

('h', 'a', 'i')

>>> a=(34,(56,"hai"),21.54)

>>> a

(34, (56, 'hai'), 21.54)

1.4.2 How to Access Values in Tuples

• Slicing works similarly to lists. Use the square bracket slice operator ([]) along with

the index or indices.

>>> a=(34,56,"hai",21.54)

>>> a[2]

'hai'

>>> a[1:4]

(56, 'hai', 21.54)

1.4.3 How to Update Tuples

• Like numbers and strings, tuples are immutable, which means you cannot update them

or change values of tuple elements.

• We were able to take portions of an existing tuple to create a new tuple.

>>> a

(34, 56, 'hai', 21.54)

>>> b=(a[2],a[1],a[0])

www.Jntufastupdates.com 38

 Surya Lakshmi Kantham Vinti

 CSE Dept

 ACET

>>> b

('hai', 56, 34)

1.4.4 How to Remove Tuple Elements and Tuples

• Removing individual tuple elements is not possible. There is, of course, nothing wrong

with putting together another tuple with the undesired elements discarded.

• To explicitly remove an entire tuple, just use the del statement to reduce an object's

reference count

del aTuple

1.5 Dictionary :

• Dictionaries are the sole mapping type in Python. Mapping objects have a one-to-many

correspondence between hashable values (keys) and the objects they represent (values).

• They can be generally considered as mutable hash tables.

• A dictionary object itself is mutable and is yet another container type that can store any

number of Python objects, including other container types.

1.5.1 How to Create and Assign Dictionaries

• The syntax of a dictionary entry is key:value . Also, dictionary entries are enclosed in

braces ({ })

• Creating dictionaries simply involves assigning a dictionary to a variable, regardless of

whether the dictionary has elements or not:

>>> dict1={}

>>> dict2={"name":"Surya","last":"vinti","college":"CMREC"}

>>> dict1

{}

>>> dict2

{'name': 'Surya', 'last': 'vinti', 'college': 'CMREC'}

>>> dict3={1:23,3:45,2:98}

>>> dict3

{1: 23, 3: 45, 2: 98}

www.Jntufastupdates.com 39

 Surya Lakshmi Kantham Vinti

 CSE Dept

 ACET

1.5.2 How to Access Values in Dictionaries

• To traverse a dictionary (normally by key):

>>> dict3={1:23,3:45,2:98}

>>> dict3[1]

23

>>> dict2

{'name': 'Surya', 'last': 'vinti', 'college': 'CMREC'}

>>> dict2["name"]

'Surya'

1.5.3 How to Update Dictionaries

• You can update a dictionary by adding a new entry or element (i.e., a key-value pair),

modifying an existing entry, or deleting an existing entry

>>> dict2= {'name': 'Surya', 'last': 'vinti', 'college': 'CMREC'}

>>> dict2["name"]="Lakshmi"

>>> dict2

{'name': 'Lakshmi', 'last': 'vinti', 'college': 'CMREC'}

>>> dict3={1:23,3:45,2:98}

>>> dict3[3]=45.7

>>> dict3

{1: 23, 3: 45.7, 2: 98}

1.5.4 How to Remove Dictionary Elements and Dictionaries

• Either remove individual dictionary elements or clear the entire contents of a dictionary

>>> dict3

{1: 23, 3: 45.7, 2: 98}

>>> del dict3[2]

>>> dict3

{1: 23, 3: 45.7}

www.Jntufastupdates.com 40

 Surya Lakshmi Kantham Vinti

 CSE Dept

 ACET

>>> del dict3

>>> dict3

Traceback (most recent call last):

 File "<stdin>", line 1, in <module>

NameError: name 'dict3' is not defined

2. Character Sets

• In Python, character literals look just like string literals and are of the string type.

• All data and instructions in a program are translated to binary numbers before being run

on a real computer.

• To support this translation, the characters in a string each map to an integer value.

• This mapping is defined in character sets, among them the

– ASCII set , and the

– Unicode set

2.1 ASCII:

• The term ASCII stands for American Standard Code for Information Interchange , In

the 1960s, the original ASCII set encoded each keyboard character and several control

characters using the integers from 0 through 127.

• An example of a control character is Control1D, which is the command to terminate a

shell window.

• As new function keys and some international characters were added to keyboards, the

ASCII set doubled in size to 256 distinct values in the mid-1980s.

2.2 Unicode :

www.Jntufastupdates.com 41

 Surya Lakshmi Kantham Vinti

 CSE Dept

 ACET

• When characters and symbols were added from languages other than English, the

Unicode set was created to support 65,536 values in the early 1990s.

• Unicode supports more than 128,000 values at the present time.

3. CONTROL STATEMENTS

3.1 Decision making Statements :

• Decision-making is the anticipation of conditions occurring during the execution of a

program and specified actions taken according to the conditions.

• Python programming language assumes any non-zero and non-null values as TRUE,

and any zero or null values as FALSE value.

• Decision making Statements:

– if

– if else

– if-elif-else

– nested if

3.1.1 Simple if

• if statement contains a logical/boolean expression using which the data is compared

and a decision is made based on the result of the comparison.

• Syntax

Control
Statements

Decision making
Statements

Looping
Statements

Jumping
Statements

www.Jntufastupdates.com 42

 Surya Lakshmi Kantham Vinti

 CSE Dept

 ACET

if expression:

statement(s)

statement-x

• If the boolean expression evaluates to TRUE, then the block of statement(s) inside the

if statement is executed.

• In Python, statements in a block are uniformly indented after the : symbol.

• If boolean expression evaluates to FALSE, then the first set of code after the end of

block is executed.

>>>if 5>3:

 print("hai")

Output:

hai

3.1.2 if-else

• The if-else statement is the most common type of selection statement. It is also called

a two-way selection statement, because it directs the computer to make a choice

between two alternative courses of action

• Python syntax for the if-else statement:

if <condition>:

www.Jntufastupdates.com 43

 Surya Lakshmi Kantham Vinti

 CSE Dept

 ACET

 <sequence of statements–1>

else:

 <sequence of statements–2>

• The condition in the if-else statement must be a Boolean expression—that is, an

expression that evaluates to either true or false

3.1.3. Multi-Way if Statement(if-elif-else)

• The process of testing several conditions and responding accordingly can be described

in code by a multi-way selection statement.

• The syntax of the multi-way if statement is the following:

if <condition-1>:

www.Jntufastupdates.com 44

 Surya Lakshmi Kantham Vinti

 CSE Dept

 ACET

 <sequence of statements-1>

elif <condition-n>:

 <sequence of statements-n>

else:

 <default sequence of statements>

• The multi-way if statement considers each condition until one evaluates to True or

they all evaluate to False.

• When a condition evaluates to True, the corresponding action is performed and

control skips to the end of the entire selection statement.

• If no condition evaluates to True, then the action after the trailing else is performed.

3.1.4 Nested if -else

• Nested if-else statements means an if-else statement inside another if/else statement

or both.

www.Jntufastupdates.com 45

 Surya Lakshmi Kantham Vinti

 CSE Dept

 ACET

• Syntax:

if <expression1>:

 if <expression2>:

 statement block1

 else:

 statement block2

else:

 if <expression3>:

 statement block3

 else:

 statement block4

Code

 a=int(input("Enter 1st number:"))

 b=int(input("Enter 2nd number:"))

 c=int(input("Enter 3rd number:"))

 if a>b:

 if a>c:

 print(a,"is biggest")

 else:

 print(c,"is biggest")

 else:

 if b>c:

 print(b,"is biggest")

 else:

www.Jntufastupdates.com 46

 Surya Lakshmi Kantham Vinti

 CSE Dept

 ACET

 print(c,"is biggest")

Output:

nestedif()

Enter 1st number:5

Enter 2nd number:2

Enter 3rd number:8

8 is biggest

3.2 Looping Statements

• In general, statements are executed sequentially: The first statement in a function is

executed first, followed by the second, and so on. There may be a situation when you

need to execute a block of code several number of times.

• A loop statement allows us to execute a statement or group of statements multiple

times.

• Looping Statements supported by Python :

– for

– while

3.2.1 while loop

• The while loop is also called an entry-control loop, because its condition is tested at

the top of the loop.

• This implies that the statements within the loop can execute zero or more times.

• Syntax:

 while <condition>:

 <sequence of statements>

www.Jntufastupdates.com 47

 Surya Lakshmi Kantham Vinti

 CSE Dept

 ACET

Code :

i=1

while(i<=10):

 print(i,end=" ")

 i=i+1

Output:

1 2 3 4 5 6 7 8 9 10

3.2.2 for loop :

• The for statement in Python has the ability to iterate over the items of any

sequence, such as a list or a string.

• The basic form of for loop is

for <variable> in range(<lowerbound>,<upperbound+1)):

<statement-1>

.

.

<statement-n>

Examples:

>>>for i in “Surya”:

 print(i,end=“,”)

S,u,r,y,a,

>>>for i in range(5,10):

 print(i)

www.Jntufastupdates.com 48

 Surya Lakshmi Kantham Vinti

 CSE Dept

 ACET

5

6

7

8

9

Nested Loops :

• Python programming language allows the use of one loop inside another loop. The

following section shows a few examples to illustrate the concept.

• Syntax for nested for loop:

for iterating_var in sequence:

 for iterating_var in sequence:

 statement(s) –block1

 statement(s)- block2

• The syntax for a nested while loop statement in Python programming language is

as follows:

while expression:

 while expression:

 statement(s)-block1

 statement(s)-block2

Examples:

>>>for i in range(1,4):

 for j in range(1,4):

 print(“*” ,end=‘ ‘)

 print(“\r”)

Output:

 * * *

 * * *

 * * *

www.Jntufastupdates.com 49

 Surya Lakshmi Kantham Vinti

 CSE Dept

 ACET

4 Input Validation : Calculating a Running Total

vchoice=["y","Y"]

invchoice=["n","N"]

choice=vchoice+invchoice

num=[]

s=0

ch="y"

while ch in vchoice:

 n=int(input("Enter a number:"))

 num.append(n)

 s=s+n

 ch=input("Do u want to enter another number:[Y/N]")

 while ch not in choice:

 ch=input("Enter a proper choice:")

print("All the elements u entered till now")

for i in num:

 print(i,end=" ")

print("Sum of all the numbers u entered are:",s)

OUTPUT:

Enter a number:5

Do u want to enter another number:[Y/N]y

Enter a number:6

Do u want to enter another number:[Y/N]Y

Enter a number:2

Do u want to enter another number:[Y/N]u

Enter a proper choice:i

www.Jntufastupdates.com 50

 Surya Lakshmi Kantham Vinti

 CSE Dept

 ACET

Enter a proper choice:o

Enter a proper choice:y

Enter a number:87

Do u want to enter another number:[Y/N]n

All the elements u entered till now

5 6 2 87 Sum of all the numbers u entered are: 100

www.Jntufastupdates.com 51

	UNIT 1 PART 1
	UNIT 1 PART 2

